UMTS (Rel. ’99) incorporates enhanced GSM Phase 2+ Core Networks with GPRS and CAMEL. This enables network operators to enjoy the improved cost-efficiency of UMTS while protecting their 2G investments and reducing the risks of implementation.
In UMTS release 1 (Rel. '99), a new radio access network UMTS terrestrial radio access network (UTRAN) is introduced. UTRAN, the UMTS radio access network (RAN), is connected via the Iu to the GSM Phase 2+ core network (CN). The Iu is the UTRAN interface between the radio network controller (RNC) and CN; the UTRAN interface between RNC and the packet-switched domain of the CN (Iu–PS) is used for PS data and the UTRAN interface between RNC and the circuit-switched domain of the CN (Iu–CS) is used for CS data.
"GSM–only" mobile stations (MSs) will be connected to the network via the GSM air (radio) interface (Um). UMTS/GSM dual-mode user equipment (UE) will be connected to the network via UMTS air (radio) interface (Uu) at very high data rates (up to almost 2 Mbps). Outside the UMTS service area, UMTS/GSM UE will be connected to the network at reduced data rates via the Um.
Maximum data rates are 115 kbps for CS data by HSCSD, 171 kbps for PS data by GPRS, and 553 kbps by EDGE. Handover between UMTS and GSM is supported, and handover between UMTS and other 3G systems (e.g., multicarrier CDMA [MC–CDMA]) will be supported to achieve true worldwide access.
Figure 3. Transmission Rate The public land mobile network (PLMN) described in UMTS Rel. ’99 incorporates three major categories of network elements:
- GSM Phase 1/2 core network elements: mobile services switching center (MSC), visitor location register (VLR), home location register (HLR), authentication center (AC), and equipment identity register (EIR)
- GSM Phase 2+ enhancements: GPRS (serving GPRS support node [SGSN] and gateway GPRS support node [GGSN]) and CAMEL (CAMEL service environment [CSE])
- UMTS specific modifications and enhancements, particularly UTRAN
Network Elements from GSM Phase 1/2
The GSM Phase 1/2 PLMN consists of three subsystems: the base station subsystem (BSS), the network and switching subsystem (NSS), and the operations support system (OSS). The BSS consists of the functional units: base station controller (BSC), base transceiver station (BTS) and transcoder and rate adapter unit (TRAU). The NSS consists of the functional units: MSC, VLR, HLR, EIR, and the AC. The MSC provides functions such as switching, signaling, paging, and inter–MSC handover. The OSS consists of operation and maintenance centers (OMCs), which are used for remote and centralized operation, administration, and maintenance (OAM) tasks.
Figure 4. UMTS Phase 1 Network Network Elements from GSM Phase 2+
GPRS
The most important evolutionary step of GSM toward UMTS is GPRS. GPRS introduces PS into the GSM CN and allows direct access to packet data networks (PDNs). This enables high–data rate PS transmission well beyond the 64 kbps limit of ISDN through the GSM CN, a necessity for UMTS data transmission rates of up to 2 Mbps. GPRS prepares and optimizes the CN for high–data rate PS transmission, as does UMTS with UTRAN over the RAN. Thus, GPRS is a prerequisite for the UMTS introduction.
Two functional units extend the GSM NSS architecture for GPRS PS services: the GGSN and the SGSN. The GGSN has functions comparable to a gateway MSC (GMSC). The SGSN resides at the same hierarchical level as a visited MSC (VMSC)/VLR and therefore performs comparable functions such as routing and mobility management.
CAMEL
CAMEL enables worldwide access to operator-specific IN applications such as prepaid, call screening, and supervision. CAMEL is the primary GSM Phase 2+ enhancement for the introduction of the UMTS virtual home environment (VHE) concept. VHE is a platform for flexible service definition (collection of service creation tools) that enables the operator to modify or enhance existing services and/or define new services. Furthermore, VHE enables worldwide access to these operator-specific services in every GSM and UMTS PLMN and introduces location-based services (by interaction with GSM/UMTS mobility management). A CSE and a new common control signaling system 7 (SS7) (CCS7) protocol, the CAMEL application part (CAP), are required on the CN to introduce CAMEL.
Network Elements from UMTS Phase 1
As mentioned above, UMTS differs from GSM Phase 2+ mostly in the new principles for air interface transmission (W–CDMA instead of time division multiple access [TDMA]/frequency division multiple access [FDMA]). Therefore, a new RAN called UTRAN must be introduced with UMTS. Only minor modifications, such as allocation of the transcoder (TC) function for speech compression to the CN, are needed in the CN to accommodate the change. The TC function is used together with an interworking function (IWF) for protocol conversion between the A and the Iu–CS interfaces.
UTRAN
The UMTS standard can be seen as an extension of existing networks. Two new network elements are introduced in UTRAN, RNC, and Node B. UTRAN is subdivided into individual radio network systems (RNSs), where each RNS is controlled by an RNC. The RNC is connected to a set of Node B elements, each of which can serve one or several cells.
Figure 5. UMTS Phase 1: UTRAN Existing network elements, such as MSC, SGSN, and HLR, can be extended to adopt the UMTS requirements, but RNC, Node B, and the handsets must be completely new designs. RNC will become the replacement for BSC, and Node B fulfills nearly the same functionality as BTS. GSM and GPRS networks will be extended, and new services will be integrated into an overall network that contains both existing interfaces such as A, Gb, and Abis, and new interfaces that include Iu, UTRAN interface between Node B and RNC (Iub), and UTRAN interface between two RNCs (Iur). UMTS defines four new open interfaces:
- Uu: UE to Node B (UTRA, the UMTS W–CDMA air interface
- Iu: RNC to GSM Phase 2+ CN interface (MSC/VLR or SGSN)
- Iu-CS for circuit-switched data
- Iu-PS for packet-switched data
- Iub: RNC to Node B interface
- Iur: RNC to RNC interface, not comparable to any interface in GSM
The Iu, Iub, and Iur interfaces are based on ATM transmission principles.
The RNC enables autonomous radio resource management (RRM) by UTRAN. It performs the same functions as the GSM BSC, providing central control for the RNS elements (RNC and Node Bs).
The RNC handles protocol exchanges between Iu, Iur, and Iub interfaces and is responsible for centralized operation and maintenance (O&M) of the entire RNS with access to the OSS. Because the interfaces are ATM–based, the RNC switches ATM cells between them. The user’s circuit-switched and packet-switched data coming from Iu–CS and Iu–PS interfaces are multiplexed together for multimedia transmission via Iur, Iub, and Uu interfaces to and from the UE.
The RNC uses the Iur interface, which has no equivalent in GSM BSS, to autonomously handle 100 percent of the RRM, eliminating that burden from the CN. Serving control functions such as admission, RRC connection to the UE, congestion and handover/macro diversity are managed entirely by a single serving RNC (SRNC).
If another RNC is involved in the active connection through an inter–RNC soft handover, it is declared a drift RNC (DRNC). The DRNC is only responsible for the allocation of code resources. A reallocation of the SRNC functionality to the former DRNC is possible (serving radio network subsystem [SRNS] relocation). The term controlling RNC (CRNC) is used to define the RNC that controls the logical resources of its UTRAN access points.
Figure 6. RNC Functions Node B
Node B is the physical unit for radio transmission/reception with cells. Depending on sectoring (omni/sector cells), one or more cells may be served by a Node B. A single Node B can support both FDD and TDD modes, and it can be co-located with a GSM BTS to reduce implementation costs. Node B connects with the UE via the W–CDMA Uu radio interface and with the RNC via the Iub asynchronous transfer mode (ATM)–based interface. Node B is the ATM termination point.
The main task of Node B is the conversion of data to and from the Uu radio interface, including forward error correction (FEC), rate adaptation, W–CDMA spreading/despreading, and quadrature phase shift keying (QPSK) modulation on the air interface. It measures quality and strength of the connection and determines the frame error rate (FER), transmitting these data to the RNC as a measurement report for handover and macro diversity combining. The Node B is also responsible for the FDD softer handover. This micro diversity combining is carried out independently, eliminating the need for additional transmission capacity in the Iub.
The Node B also participates in power control, as it enables the UE to adjust its power using downlink (DL) transmission power control (TPC) commands via the inner-loop power control on the basis of uplink (UL) TPC information. The predefined values for inner-loop power control are derived from the RNC via outer-loop power control.
Figure 7. Node B Overview UMTS UE
The UMTS UE is based on the same principles as the GSM MS—the separation between mobile equipment (ME) and the UMTS subscriber identity module (SIM) card (USIM). Figure 8 shows the user equipment functions. The UE is the counterpart to the various network elements in many functions and procedures.
Figure 8. UE Functions